Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition

نویسندگان

  • Xin Bian
  • Zhen Li
  • George E. Karniadakis
چکیده

a r t i c l e i n f o a b s t r a c t We present a methodology to concurrently couple particle-based methods via a domain decomposition (DD) technique for simulating viscous flows. In particular, we select two resolutions of the smoothed particle hydrodynamics (SPH) method as demonstration. Within the DD framework, a simulation domain is decomposed into two (or more) overlapping sub-domains, each of which has an individual particle scale determined by the local flow physics. Consistency of the two sub-domains is achieved in the overlap region by matching the two independent simulations based on Lagrangian interpolation of state variables and fluxes. The domain decomposition based SPH method (DD-SPH) employs different spatial and temporal resolutions, and hence, each sub-domain has its own smoothing length and time step. As a consequence, particle refinement and de-refinement are performed asynchronously according to individual time advancement of each sub-domain. The proposed strategy avoids SPH force interactions between different resolutions on purpose, so that coupling, in principle, can go beyond SPH–SPH, and may allow SPH to be coupled with other mesoscopic or microscopic particle methods. The DD-SPH method is validated first for a transient Couette flow, where simulation results based on proper coupling of spatial–temporal scales agree well with analytical solutions. In particular, we find that the size of the overlap region should be at least r c,1 + 2r c,2 , where r c,1 and r c,2 are cut off radii in the two sub-domains with r c,1 ≤ r c,2. Subsequently, a perturbation wave is considered traveling either parallel or perpendicular to the hybrid interface. Compressibility is significant if transient behavior at short sonic-timescale is relevant, while the fluid can be treated as quasi-incompressible at sufficiently long time scale. To this end, we propose a coupling of density fields from the two sub-domains. Finally, a steady Wannier flow is simulated, where a rotating cylinder is placed next to a wall. Lubrication effects are prominent in the gap between the cylinder and the bottom wall, rendering a high resolution necessary, whereas in the rest of the domain the flow can be simulated at much lower resolution. DD-SPH simulation results with both spatial and temporal resolution ratios up to 16 agree well with the results of a single high resolution simulation, but with the former two-orders of magnitude faster in the region away from the cylinder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SWIFT: Fast algorithms for multi-resolution SPH on multi-core architectures

This paper describes a novel approach to neighbourfinding in Smoothed Particle Hydrodynamics (SPH) simulations with large dynamic range in smoothing length. This approach is based on hierarchical cell decompositions, sorted interactions, and a task-based formulation. It is shown to be faster than traditional tree-based codes, and to scale better than domain decomposition-based approaches on sha...

متن کامل

‎Incompressible ‎smoothed particle hydrodynamics simulations on free surface flows

‎The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH)‎. ‎In the current ISPH method‎, ‎the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...

متن کامل

Efficient and Scalable Algorithms for Smoothed Particle Hydrodynamics on Hybrid Shared/Distributed-Memory Architectures

This paper describes a new fast and implicitly parallel approach to neighbour-finding in multi-resolution Smoothed Particle Hydrodynamics (SPH) simulations. This new approach is based on hierarchical cell decompositions and sorted interactions, within a task-based formulation. It is shown to be faster than traditional tree-based codes, and to scale better than domain decomposition-based approac...

متن کامل

Numerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method

In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation of the sample and its free surface boundary were captured without the cumbersome process of the grid generation. This three-step SPH scheme employs an explicit predictor-corrector technique an...

متن کامل

Cooling flows within galactic haloes: the kinematics and properties of infalling multi-phase gas

We study the formation of disks via the cooling flow of gas within galactic haloes using smoothed particle hydrodynamics simulations. These simulations resolve mass scales of a few thousand solar masses in the gas component for the first time. Thermal instabilities result in the formation of numerous warm clouds that are pressure confined by the hot ambient halo gas. The clouds fall slowly onto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 297  شماره 

صفحات  -

تاریخ انتشار 2015